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Abstract

This paper presents the first known analytical solution for vibrations of a polarly orthotropic Mindlin
sectorial plate with simply supported radial edges. The solution is a series solution constructed using the
Frobenius method and exactly satisfies not only the boundary conditions along the radial and circular
edges, but also the regularity conditions at the vertex of the radial edges. The moment and shear force
singularities at the vertex are exactly considered in the solution. The correctness of the proposed solution is
confirmed by comparing non-dimensional frequencies of isotropic plates obtained from the present solution
with published data obtained from a closed-form solution. This paper also investigates the effects of elastic
and shear moduli on the vibration frequencies of the sectorial plates with free or fix boundary conditions
along the circumferential edge. A study is also carried out about the influence of elastic and shear moduli on
the moment and shear force singularities at the plate origin ðr ¼ 0Þ for different vertex angles.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

There are hundreds of published papers on the free vibrations of complete circular and annular,
thin and thick plates [1–5]. However, relatively little research work has been done on sectorial plates
even though solutions for sectorial plates with simply supported radial edges can be recovered from
solutions for complete circular plates for some special values of vertex angles less than 180�: Based
on the classical plate theory for isotropic plates, Ben-Amoz [6], Westmann [7], and Bhattacharya and
Bhowmic [8] provided some approximate numerical results for cases with clamped radial edges, while
Huang et al. [9] presented an exact solution for cases with simply supported radial edges and various
conditions along the circular edge. Experimental results were reported by Maruyama and Ichinomiya
[10] for completely clamped sectorial plates. To study the vibrations of polar-orthotropic sector
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plates, Irie et al. [11] used the Ritz method, while Rubin [12] applied the Frobenius method to
develop a series solution for cases with simply supported radial edges.

Based on the Mindlin plate theory, only two articles [13,14] have considered the vibrations of
sector plates even though some work has been published on annular sector plates (i.e., Refs. [15–19]).
The vibration of a sector plate can be treated as a special case of an annular sector plate. However,
the singularities for stress resultants at the apex of a sector plate may cause great difficulty in
reducing the solution for an annular sector plate to that for a sector plate. Huang et al. [13] developed
an exact solution in terms of ordinary and modified Bessel functions for the case with simply
supported radial edges. Liu and Liew [14] applied the differential quadrature method to find the
natural frequencies of Mindlin sector plates with various types of boundary conditions. In fact, to
avoid stress singularities at the vertex, Liu and Liew [14] analyzed annular plates with the ratio of the
inner radius to the outer radius equal to 10�5 and with the free boundary condition along the inner
circumference.

The present work develops an analytical solution for vibrations of a polar-orthotropic Mindlin
sector plate having simply supported radial edges. The analytical solution is a series solution and
is constructed using the Frobenius method. From the analytical solution, the variation of stress-
resultant singularities at the vertex along with the vertex angle and material properties are also
investigated. The validity of the analytical solution is confirmed by comparing non-dimensional
frequencies for isotropic plates obtained from the proposed solution with published data obtained
from a closed-form solution consisting of non-integer order ordinary and modified Bessel
functions of the first and second kinds.

2. Basic equations

It is well-known that the equations of motion for the Mindlin plate theory can be expressed in
terms of stress resultants in polar co-ordinates (see Fig. 1) as [20]

Mr;r þ
1

r
Mry;y þ

Mr � My

r
� Qr ¼

rh3

12
.cr; ð1aÞ

Mry;r þ
1

r
My;y þ

2Mry

r
� Qy ¼

rh3

12
.cy; ð1bÞ
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Fig. 1. Defining sketch for a sectorial plate.
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Qr;r þ
Qr

r
þ

1

r
Qy;y ¼ rh .w; ð1cÞ

where r is the mass density per unit volume, h is the thickness of the plate, w is the transverse
displacement, cr and cy are the bending rotations of the midplane normal in the radial and
circumferential directions, respectively, and ‘‘; w’’ denotes the differential with respect to the
independent variable w: The differential with respect to time is denoted by a dot. For a polarly
orthotropic plate, the stress resultants are related to the transverse displacement and bending
rotations by

Mr ¼
h3

12
½C11cr;r þ C12r�1ðcr þ cy;yÞ�; ð2aÞ

My ¼
h3

12
½C22r�1ðcr þ cy;yÞ þ C21cr;r�; ð2bÞ

Mry ¼
h3Gry

12
½r�1ðcr;y � cyÞ þ cy;r�; ð2cÞ

Qr ¼ k2Grhðcr þ w;rÞ; ð2dÞ

Qy ¼ k2Gyhðcy þ r�1w;yÞ; ð2eÞ

where

C11 ¼
Er

1� uryuyr

; C12 ¼
Eyury

1� uryuyr

; C21 ¼
Eruyr

1� uryuyr

; C22 ¼
Ey

1� uryuyr

;

Er and Ey are elastic moduli in the radial and tangential directions, respectively, Gr; Gy; and Gry

are shear moduli in the proper directions, uij is the Poisson ratio defined as the strain in the j

direction due to the unit strain in the i direction, and k2 ¼ p2=12 is the shear correction factor.
Notably, C12 must be identical to C21:

For free vibration analysis, assume that

ðcr;cy;wÞ ¼ ðCr;Cy;W Þeiot: ð3Þ

Substituting Eqs. (2) and (3) into Eqs. (1a)–(1c) with arrangement yields

h3

12
fC11Cr;rr þ ðC12 þ C11 � C21Þr�1Cr;r þ Gryr

�2Cr;yy � C22r�2Cr

� ðC22 þ GryÞr�2Cy;y þ ðC12 þ GryÞr�1Cy;yrÞg � k2GrhðCr þ W;rÞ þ
o2rh3

12
Cr ¼ 0; ð4aÞ

h3

12
fGryðCy;rr þ r�1Cy;r � r�2CyÞ þ C22r�2Cy;yy þ ðC21 þ GryÞr�1Cr;yr

þ ðC22 þ GryÞCr;yg � k2GyhðCy þ r�1W;yÞ þ
o2rh3

12
Cy ¼ 0; ð4bÞ

k2GrhðW;rr þ r�1W;r þCr;r þ r�1CrÞ þ k2Gyhðr�1Cy;y þ r�2W;yyÞ þ o2rhW ¼ 0: ð4cÞ
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3. Construction of series solutions

To establish the solution for a sector plate with a vertex angle equal to a and with simply
supported radial edges, it is assumed that

W ðr; yÞ ¼ WnðrÞ sin pny; ð5aÞ

Crðr; yÞ ¼ CrnðrÞ sin pny; ð5bÞ

Cyðr; yÞ ¼ CynðrÞ cos pny; ð5cÞ

where pn ¼ np=a and n ¼ 1; 2; 3;y : This results in satisfaction of the simply supported boundary
conditions along y ¼ 0 and a exactly. That is,

wðr; 0; tÞ ¼ wðr; a; tÞ ¼ 0; ð6aÞ

Myðr; 0; tÞ ¼ Myðr; a; tÞ ¼ 0; ð6bÞ

crðr; 0; tÞ ¼ crðr; a; tÞ ¼ 0: ð6cÞ

By substituting Eqs. (5a)–(5c) into Eqs. (4a)–(4c) and letting %r ¼ r=a and %Wn ¼ Wn=a; where a
is the radius of plate, one can obtain

Crn;rr þ
C11 � C21 þ C12

C11
%r
�1Crn;%r �

C22 þ Gryp
2
n

C11
%r
�2 þ

12a2k2Gr

h2C11
�

ra2o2

C11

� �
Crn

�
ðC12 þ GryÞpn

C11
%r
�1Cyn;%r þ

ðC22 þ GryÞpn

C11
%r
�2Cyn �

12a2k2Gr

C11

%Wn;%r ¼ 0; ð7aÞ

Cyn;rr þ %r
�1Cyn;%r � 1þ

C22p2
n

Gry

� �
%r
�2 þ

12a2k2Gy

h2Gry
�

ra2o2

Gry

� �
Cyn

þ 1þ
C21

Gry

� �
pn %r

�1Crn;%r þ 1þ
C22

Gry

� �
pn %r

�2Crn �
12a2k2Gypn

h2Gry
%r
�1 %Wn ¼ 0; ð7bÞ

%Wn;rr þ %r
�1 %Wn;%r �

Gyp
2
n

Gr
%r
�2 �

ra2o2

k2Gr

� �
%Wn þCrn;%r þ %r

�1Crn �
Gypn

Gr
%r
�1Cyn ¼ 0: ð7cÞ

Following the Frobenius method [21] to construct the general series solutions of Eqs. (7a)–(7c), we
let

Crn ¼
X

m¼0;1

am %r
sþm; Cyn ¼

X
m¼0;1

bm %r
sþm and %Wn ¼

X
m¼0;1

cm %r
sþmþ1; ð8Þ

where the characteristic value, s; can be a complex number. The real part of s has to be positive
(i.e., ReðsÞX0) to meet the requirement of regularity conditions at the vertex of a sector domain,
namely, finite values for cr; cy; and w as %r approaches zero. From the relations between stress
resultants and displacement components given in Eqs. (2a)–(2e), it is discovered that the moments
are unbounded at the vertex as the real part of s is less than one. Substituting Eq. (8) into
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Eqs. (7a)–(7c) with careful arrangement yieldsX
m¼0;1

½ððm þ sÞðm þ s � 1Þ þ x1ðs þ mÞ � x2Þam þ ð�x3ðs þ mÞ þ x4Þbm�%r sþm�2

þ
X

m¼0;1

�x5 þ
ra2o2

C11

� �
am � x5ðs þ m þ 1Þcm

� �
%r

sþm ¼ 0; ð9aÞ

X
m¼0;1

½ðb2ðs þ mÞ þ b3Þam þ ððs þ mÞ2 � b1Þbm�%r sþm�2

�

þ �b4 þ
ra2o2

Gry

� �
bm þ b4pncm

� �
%r

sþm

�
¼ 0; ð9bÞ

X
m¼0;1

ðs þ m þ 1Þ2 �
Gyp

2
n

Gr

� �
cm þ ðs þ m þ 1Þam �

Gypn

Gr

bm

� �
%r

sþm�1 þ
ra2o2

k2Gr

cm %r
sþmþ1

� �
¼ 0;

ð9cÞ

where

x1 ¼ ðC11 � C21 þ C12Þ=C11; x2 ¼ ðC22 þ Gryp
2
nÞ=C11; x3 ¼ ðC12 þ GryÞpn=C11;

x4 ¼ ðC22 þ GryÞpn=C11; x5 ¼ 12a2k2Gr=h2C11; b1 ¼ 1þ C22p2
n=Gry;

b2 ¼ ð1þ C21=GryÞpn; b3 ¼ ð1þ C22=GryÞpn; and b4 ¼ 12a2k2Gy=h2Gry:

Satisfying Eqs. (9a)–(9c) results in the vanishing coefficients of %r with different powers.
Consequently, one obtains the following recurrence formulas:

ððs þ m þ 2Þðs þ m þ 1Þ þ x1ðs þ m þ 2Þ � x2Þamþ2 þ ð�x3ðs þ m þ 2Þ þ x4Þbmþ2

¼ � �x5 þ
ra2o2

C11

� �
am � x5ðs þ m þ 1Þcm

� �
; ð10aÞ

ðb2ðs þ m þ 2Þ þ b3Þamþ2 þ ððs þ m þ 2Þ2 � b1Þbmþ2

¼ � �b4 þ
ra2o2

Gry

� �
bm þ b4pncm

� �
; ð10bÞ

ðs þ m þ 3Þ2 �
Gyp

2
n

Gr

� �
cmþ2 þ ðs þ m þ 3Þamþ2 �

Gypn

Gr

bmþ2 ¼ �
o2a2r
k2Gr

cm; ð10cÞ

for m ¼ 0; 1; 2;y; and

½ðs þ iÞðs þ i � 1Þ þ x1ðs þ iÞ � x2�ai þ ½�x3ðs þ iÞ þ x4�bi ¼ 0; ð11aÞ

½ðs þ iÞb2 þ b3�ai þ ½ðs þ iÞ2 � b1�bi ¼ 0; ð11bÞ

ðs þ i þ 1Þai �
Gypn

Gr

bi þ ðs þ i þ 1Þ2 �
Gyp

2
n

Gr

� �
ci ¼ 0; ð11cÞ

for i ¼ 0 or 1.

ARTICLE IN PRESS

C.S. Huang, K.H. Ho / Journal of Sound and Vibration 273 (2004) 277–294 281



The values of s are determined by finding a non-trivial solution for a0; b0; and c0; which leads to
a 3*3 determinant of coefficient matrix equal to zero:

D11 D12 0

D21 D22 0

D31 D32 D33

�������
������� ¼ 0; ð12Þ

where D11 ¼ sðs � 1Þ þ x1s � x2; D12 ¼ �x3s þ x4; D21 ¼ b2s þ b3; D22 ¼ s2 � b1; D31 ¼ s þ 1;
D32 ¼ �Gypn=Gr; and D33 ¼ ðs þ 1Þ2 � Gyp

2
n=Gr: Apparently, Eq. (12) results in a sixth order

polynomial for s: There are six roots for s; and they can be complex roots. Only the roots with
positive real parts are used to construct the series solutions in order to meet the requirement of
regularity conditions at r ¼ 0:

Notably, substituting the obtained values of s into Eqs. (11a)–(11c) with i ¼ 1 and Eqs. (10a)–(10c),
one will discover that odd values of m in Eq. (8) can be eliminated because they do not produce
additional solutions. Hence, odd m will not be considered in the following.

A root with a positive real part will fall into one of the following cases and result in different
series solutions:

Case I: The root makes

D11 D12

D21 D22

�����
����� ¼ 0

but does not cause D33 ¼ 0: In this case, the relations among a0; b0; and c0 are obtained from
Eqs. (11a)–(11c) with i ¼ 0: They are

b0 ¼ �ðD11=D12Þa0 and c0 ¼ �
D31 � ðD32D11Þ=D12

D33
a0: ð13Þ

The resulting series solution is

Crn

Cyn

%Wn

8><
>:

9>=
>; ¼ a0

X
m¼0;2

%am

%bm

%cm %r

8><
>:

9>=
>;%r

sþm; ð14Þ

where %a0 ¼ 1; %b0 ¼ �ðD11=D12Þ; and %c0 ¼ �ðD31 � ðD32D11Þ=D12Þ=D33: The values of %am; %bm; and
%cm for mX2 are determined from Eqs. (10a)–(10c) by replacing ai; bi; and ci for i ¼ 0; 2; 4;y with

%ai; %bi; and %ci; respectively.
Case II: The root makes

D11 D12

D21 D22

�����
����� ¼ 0 and D33 ¼ 0:

In this case, two sub-cases have to be discussed. If the root does not make

D21 D22

D31 D32

�����
����� ¼ 0;
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then Eqs. (11a)–(11c) with i ¼ 0 result in a trivial solution for a0; b0; and c0; so this root has to be
discarded. If the root does make

D21 D22

D31 D32

�����
����� ¼ 0;

then b0 ¼ �ðD11=D12Þa0 and a0 and c0 are to be determined from boundary conditions. The series
solution can be expressed as

Crn

Cyn

%Wn

8><
>:

9>=
>; ¼ a0

X
m¼0;2

#am

#bm

#cm %r

8><
>:

9>=
>;%r

sþm þ c0
X

m¼0;2

*am

*bm

*cm %r

8><
>:

9>=
>;%r

sþm; ð15Þ

where ð #a0; #b0; #c0Þ ¼ ð1;�D11=D12; 0Þ and ð *a0; *b0; *c0Þ ¼ ð0; 0; 1Þ: The values of #am; #bm; #cm; *am; *bm; and
*cm for mX2 can be determined from Eqs. (10a)–(10c) in a way similar to that used to determine

%am; %bm; and %cm in Case I.
Case III: The root makes

D33 ¼ 0 and
D11 D12

D21 D22

�����
�����a0:

In this case, a0 ¼ b0 ¼ 0; which causes the solution form given in Eq. (8) to degenerate to the
following expression:

Crn ¼
X
m¼0

a0
m %r

s0þmþ1; Cyn ¼
X
m¼0

b0m %r
s0þmþ1; and %Wn ¼

X
m¼0

c0m %r
s0þm: ð16Þ

Again, s0 can be complex numbers, and its real part must be positive to satisfy the regularity
conditions at r ¼ 0: The relations of stress resultants and displacement components given in
Eqs. (2a)–(2e) reveal that the solution given in Eq. (16) generates unbounded shear forces at r ¼ 0
when the real part of s0 is below one. Substituting Eq. (16) into Eqs. (7a)–(7c) yields the following
recursive relations among a0

m; b
0
m; and c0m:

ððs0 þ m þ 3Þðs0 þ m þ 2Þ þ x1ðs
0 þ m þ 3Þ � x2Þa

0
mþ2 þ ð�x3ðs

0 þ m þ 1Þ þ x4Þb
0
mþ2

� x5ðs
0 þ mÞc0mþ2 ¼ � �x5 þ

ra2o2

C11

� �
a0

m; ð17aÞ

ðb2ðs
0 þ m þ 3Þ þ b3Þa

0
mþ2 þ ððs0 þ m þ 3Þ2 � b1Þb

0
mþ2 þ b4pnc0mþ2 ¼ b4 �

ra2o2

Gry

� �
bm; ð17bÞ

ðs0 þ m þ 2Þ2 �
Gyp

2
n

Gr

� �
c0mþ2 ¼ �ðs0 þ mÞa0

m þ
Gypn

Gr

b0
m �

o2a2r
k2Gr

c0m ð17cÞ
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and

ðs0ðs0 þ 1Þ þ x1ðs
0 þ 1Þ � x2Þa

0
0 þ ð�x3ðs

0 þ 1Þ þ x4Þb
0
0 � x5s0c00 ¼ 0; ð18aÞ

ððs0 þ 1Þb2 þ b3Þa
0
0 þ ððs0 þ 1Þ2 � b1Þb

0
0 þ b4pnc00 ¼ 0; ð18bÞ

ðs0Þ2 �
Gyp

2
n

Gr

� �
c00 ¼ 0: ð18cÞ

Again, Eqs. (18a)–(18c) result in a 3*3 determinant of coefficient matrix equal to zero, namely,

D0
11 D0

12 D0
13

D0
21 D0

22 D0
23

0 0 D0
33

�������
������� ¼ 0; ð19Þ

where D0
11 ¼ s0ðs0 þ 1Þ þ x1ðs0 þ 1Þ � x2; D

0
12 ¼ �x3ðs0 þ 1Þ þ x4; D

0
31 ¼ �x5s0; D0

21 ¼ b2ðs
0 þ 1Þ þ b3;

D0
22 ¼ ðs0 þ 1Þ2 � b1; D

0
23 ¼ b4pn; and D0

33 ¼ ðs0Þ2 � Gyp
2
n=Gr:

Eq. (19) also gives a sixth order polynomial of s0: The roots with negative real parts are
discarded by enforcing the regularity conditions at r ¼ 0: Similar to a foot for s in Eq. (12), a root
for s0 falls into one of the following subcases:

Subcase III(a): The root makes

D0
11 D0

12

D0
21 D0

22

�����
����� ¼ 0 and D0

33a0;

which causes c00 ¼ 0: Hence, the solution form given in Eq. (16) will degenerate into that in
Eq. (8). Hence, the root has to be discarded.

Subcase III(b): The root makes

D0
11 D0

12

D0
21 D0

22

�����
����� ¼ 0 and D0

33 ¼ 0:

Similar to Case II, if this root causes

D0
12 D0

13

D0
22 D0

23

�����
�����a0 and c00 ¼ 0;

then it must also be ejected. If this root generates

D0
12 D0

13

D0
22 D0

23

�����
����� ¼ 0; then b0

0 ¼ �
D0

11

D0
12

a0
0 �

D0
13

D0
12

c00;

and a00 and c00 are to be determined from boundary conditions. The resulting series solution is

Crn

Cyn

%Wn

8><
>:

9>=
>; ¼ a0

0

X
m¼0;2

#a0
m %r

#b0
m %r

#c0m

8><
>:

9>=
>;%r

s0þm þ c00

X
m¼0;2

*a0m %r

*b0m %r

*c0m

8><
>:

9>=
>;%r

s0þm; ð20Þ
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where ð #a00; #b
0
0; #c

0
0Þ ¼ ð1;�D0

11=D
0
12; 0Þ and ð *a00; *b

0
0; *c

0
0Þ ¼ ð0;�D0

13=D
0
12; 1Þ: The values of #a0m;

#b0m; #c
0
m; *a

0
m;

*b0m; and *c0m for mX2 can be determined from the recurrence formulas given in Eqs. (17a)–(17c).
Subcase III(c): The root makes

D0
33 ¼ 0 and

D0
11 D0

12

D0
21 D0

22

�����
�����a0:

One can determine the relations among a0; b0; and c0 from Eqs. (18a) and (18b), and express the
relations as a0

0 ¼ %a00c00 and b00 ¼ %b00c00: Consequently, the series solution is

Crn

Cyn

%Wn

8><
>:

9>=
>; ¼ c00

X
m¼0;2

%a0m %r

%b0m %r

%c0m

8><
>:

9>=
>;%r

s0þm; ð21Þ

where the coefficients %a0m; %b
0
m; and %c0m for mX2 are determined from the recurrence formulas given

in Eqs. (17a)–(17c).
Notably, when Eq. (12) or (19) has repeated roots with positive real parts or has real roots

differing by an integer, the complete series solutions have to be constructed in a way somewhat
different from that given above. The solution corresponding to the smaller root will consist of a
series solution multiplied by log ð%rÞ just like the approach usually used to solve a single ordinary
differential equation [21]. However, this situation very rarely occurs in the case of an orthotropic
plate. It only may happen with very special combinations of the vertex angle and material
properties. In the following case studies, this type of solution does not occur, so we will not
investigate this solution further. The reader interested in constructing this solution can refer to
Ho’s thesis [22].

When converting the solutions for a orthotropic plate to those for an isotropic plate, one
frequently finds that the real roots of s for Eq. (12) differ by an integer. The real root for s in Case
I, say s1; differs from the real root in Case II, say s2; by an integer k: That is, s1 ¼ s2 þ k: Special
cares are needed to construct the series solution corresponding to s2: Since there are two
undetermined coefficients in Case II solution given in Eq. (15), one cannot add logarithm terms
into this solution in the manner just mentioned above. When s2 þ m is less than s1; the solution is
constructed as described in Case II.

When s2 þ m ¼ s1; Eqs. (10a)–(10c) result in a set of linear dependent algebraic equations. Only
two of them are linear independent and can be expressed as

d11 d12 0

d21 d22 0

" # am

bm

cm

8><
>:

9>=
>; ¼

Z11 Z12
Z21 Z22

" #
am�2

cm�2

( )
; ð22Þ

where d11 ¼ s1ðs1 � 1Þ þ x1s1 � x2; d12 ¼ �x3s1 þ x4; d21 ¼ s1 þ 1; d22 ¼ �Gypn=Gr; Z11 ¼
x5 � ðro2a2Þ=C11; Z12 ¼ x5ðs1 � 1Þ; Z21 ¼ 0; and Z22 ¼ �ro2a2=ðk2GrÞ: Apparently, cm in
Eq. (22) can be arbitrary number. Assume that cm equals c0: The values of am�2 and cm�2 can
be determined from Eqs. (10a)–(10c) in terms of a0 and c0: Then, am and bm can be expressed in
terms of a0 and c0:
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When s2 þ m > s1; the values of am; bm; and cm can be determined from Eqs. (10a)–(10c), again.
Consequently, one obtains the general solution corresponding to s2 with an expression similar to
Eq. (15).

Finally, it should be noted that the general series solutions developed in this section have three
undetermined coefficients. These three coefficients are to be determined from three boundary
conditions along the circular edge of a sector plate.

4. Convergence studies

The accuracy of the solution developed above depends on the number of terms used in the series
solution. To show the validity of the proposed solution, convergence studies were conducted for
isotropic and orthotropic sector plates with various vertex angles. The converged results are
compared here with those from a closed-form solution for an isotropic plate. Notably, unless
otherwise noted, the thickness-to-radius ratio ðh=aÞ and the Poisson ratio ury are set to be 0.2 and
0.3, respectively, for the numerical results shown in this paper. Only the frequencies corresponding
to mode shapes with no radial node lines are considered here.

Table 1 shows the convergence of the non-dimensional frequency parameter, oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
;

where Dr ¼ Erh
3=12ð1� u2ryÞ; for isotropic sectorial plates with free boundary conditions along the

circumference, namely, Mrða; y; tÞ ¼ Mryða; y; tÞ ¼ Qrða; y; tÞ ¼ 0: The mode number ðsÞ indicates
the order of the frequencies corresponding to mode shapes with no radial node lines. Three
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Table 1

Convergence of nondimensional frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
for isotropic sectorial plates with a free circular

edge

Vertex angle Mode no. Number of terms in the series solution Huang et al. [13]

s 15 20 40 60

60� 1 11.770 11.315 11.314 11.314 11.314

2 39.396 39.959 39.960 39.960 39.960

3 70.971 70.863 70.862 70.862 70.863

4 102.25 102.27 102.27 102.27 102.27

5 / 132.41 132.87 132.87 132.87

180� 1 / 0.000 0.0000 0.0000 0.0000

2 / 17.946 17.978 17.978 17.978

3 / 44.445 44.434 44.434 44.434

4 / 74.331 74.331 74.331 74.332

5 / 105.03 105.03 105.03 105.03

330� 1 / 2.1736 2.2498 2.2498 2.2498

2 19.342 15.313 15.291 15.291 15.291

3 39.057 40.005 40.008 40.008 40.008

4 68.809 68.775 68.775 68.775 68.775

5 98.308 98.984 98.983 98.983 98.983

/ : No corresponding data were found.
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different vertex angles were considered, namely, a ¼ 60�; 180�; and 330�: The solutions for the
cases of a ¼ 60� and 180� were established from the solution forms given in Eqs. (14) and (15)
with the corresponding roots of Eq. (12) differing by an integer, while the solution for a ¼ 330�

was developed from Eqs. (14) and (20). Results listed in Table 1 reveal that 40 terms are needed
for each of the series solutions to obtain results with five-significant-figure convergence.

Table 1 also lists the results from an exact analytical solution consisting of non-integer order
ordinary and modified Bessel functions of the first and second kinds obtained by Huang et al. [13].
Comparison between the present results and the results given by Huang et al. [13] reveals that the
present results converge to the exact solution with slight differences in the fifth significant figure.
This verifies the correctness of the proposed solution.

Table 2 summarizes the non-dimensional frequencies for orthotropic sectorial plates having a
vertex angle of 330� obtained by using different numbers of terms in the series solutions. Two
values of Er=Ey; 0.1 and 10, were considered. In both cases, the shear moduli Gr; Gy; and Gry were
set to be 0:4Ey: In these cases, free boundary conditions were considered along the circumference.
The solutions were established from the solution forms given in Eqs. (14) and (20). Like the data
given in Table 1, 40 terms in the series solution are needed to obtain the results with five-
significant-figure convergence. The data shown in Tables 1 and 2 indicate that as the number of
terms increases, the results may converge to the exact values in an oscillatory manner.
Furthermore, the data for smaller Er=Ey converge somewhat slowly.

5. Numerical results

Tables 3 and 4 list the accurate non-dimensional frequency parameter, oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
; for

orthotropic sectorial plates with free boundary conditions along the circumferential edge, while
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Table 2

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
for orthotropic sectorial plates with a free circumference and

a ¼ 330�

Er=Ey Mode no. Number of terms in the series solution

s 15 20 40 60

1/10 1 / 4.0089 6.6322 6.6322

2 / 33.905 32.713 32.713

3 / 68.618 69.259 69.259

4 132.73 114.94 114.73 114.73

5 208.91 161.92 165.31 165.31

10 1 / 1.0248 1.0835 1.0835

2 9.3624 8.0723 8.0527 8.0527

3 31.206 20.496 20.496 20.496

4 40.148 31.014 31.014 31.014

5 42.414 41.568 41.568 41.568

/ : No corresponding data were found.
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Figs. 2 and 3 depict the variation of oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
with vertex angles for orthotropic sectorial plates

with fixed boundary conditions along the circumference, namely, wða; y; tÞ ¼ crða; y; tÞ ¼
cyða; y; tÞ ¼ 0: Again, only the frequencies corresponding to mode shapes with no radial node
lines were considered. The results were obtained by using 60 terms in the series solution. The
effects of h=a on the frequencies are shown in Table 3, in which the results shown are for
the material properties, Gr ¼ Gy ¼ Gry ¼ 0:4Ey and Er ¼ 5Ey: Table 4 and Fig. 2 show the results
for Gr ¼ Gy ¼ Gry ¼ 0:4Ey and the effects of Er=Ey on the frequencies for various vertex angles.
Fig. 3 depicts the effects of the shear moduli on the frequencies obtained by setting Er=Ey ¼ 5 and
Gr ¼ Gy ¼ Gry ¼ gEy; where g is given in the legend of Fig. 3. Notably, the numbers in
parentheses in the legends of Figs. 2 and 3 denote the modal numbers.

The results given in Table 3 indicate that for a constant vertex angle, the non-dimensional
frequency parameter, oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
; decreases with the increase of h=a not only because of the

inherent shear deformation and rotary inertia, but also because 1=h is involved in the definition of
the frequency parameter. Notably, as h=a increases, an alternative form of the non-dimensional
frequency parameter, oa

ffiffiffiffiffiffiffiffiffiffi
r=Er

p
; increases in the lower modes, while this parameter decreases in

some of the higher modes. The latter situation occurs when the thickness-shear modes appear
among the frequencies shown.

Comparing the results shown in Table 3 for the Mindlin plate theory with those obtained by
using series solutions based on classical plate theory [22] reveals that, as expected, the former are
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Table 3

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
for orthotropic sectorial plates with a free circular edge and various h=a

(Gr ¼ Gy ¼ Gry ¼ 0:4Ey and Er ¼ 5Ey)

h=a s Vertex angle (a; deg)

30 60 90 120 150 180 195 210 270 330 360

— 1 22.387 6.2681 2.8892 1.5515 0.8081 0.0000 0.7050 0.9503 1.3969 1.5828 1.6394

2 64.155 31.097 22.438 18.598 16.473 15.146 15.336 15.485 15.847 16.026 16.084

3 128.10 78.122 63.975 57.459 53.775 51.439 51.792 52.068 52.733 53.063 53.168

4 211.22 144.50 124.87 115.66 110.40 107.05 107.54 107.92 108.85 109.31 109.46

0.1 1 17.920 4.8460 2.1247 1.3582 0.7491 0.0000 0.5532 0.7418 1.2469 1.5027 1.5846

2 51.722 27.656 20.578 17.303 15.547 14.351 14.052 13.806 13.222 12.901 12.755

3 87.642 58.705 49.616 45.323 42.635 40.893 40.350 39.887 38.572 37.674 37.322

4 122.05 90.954 80.938 76.036 73.091 71.095 70.416 69.819 68.031 66.821 66.331

0.2 1 15.862 4.7121 2.0990 1.0706 0.5265 0.0000 0.4945 0.6938 1.1167 1.3164 1.3785

2 37.634 21.809 16.779 14.344 12.914 11.973 11.648 11.370 10.562 10.020 9.8050

3 55.916 39.375 33.956 31.283 29.694 28.639 28.254 27.921 26.929 26.254 25.987

4 71.977 55.150 49.605 46.849 45.197 44.092 43.667 43.299 42.208 41.481 41.200

0.4 1 11.831 4.2279 2.0231 1.0685 0.5375 0.0000 0.4403 0.6050 0.9208 1.0471 1.0808

2 22.875 14.261 11.322 9.8339 8.9268 8.3098 8.0691 7.8606 7.2419 6.8300 6.6704

3 30.763 21.639 18.795 17.462 16.703 16.219 16.089 15.971 15.587 15.303 15.188

4 39.689 30.830 21.792 20.623 20.022 19.666 19.558 19.474 19.277 19.187 19.160

—: From classical plate theory.

C.S. Huang, K.H. Ho / Journal of Sound and Vibration 273 (2004) 277–294288



smaller than the latter, and that their differences increase with the increase of h=a: For the second
to fourth modes and aX180�; the non-dimensional frequencies for the Mindlin plate theory
decrease with the increase of a; while the results for classical plate theory show the opposite trend.

Table 4 and Fig. 2 indicate that for a constant vertex angle, the non-dimensional frequency
parameter, oa2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
; decreases as Er=Ey increases because Er is involved in the definition of

the frequency parameter, while Fig. 3 shows an increase of the non-dimensional frequencies with
the increase of the shear moduli. However, it should be noted that for a constant vertex angle, the
frequency o increases with the increase of Er=Ey: For constant material properties, the frequencies
decrease as a increases because the circumferential distance between the radial supports increases
with increasing a so that the stiffness of the plate decreases. However, in the case of free boundary
conditions along the circumferential edge, the frequencies of the first mode decrease when a
increases up to 180�; and then they increase as a goes further away from 180�: This is because the
first mode frequency is equal to zero (a rigid-body mode) when a is 180�:

6. Singularities in stress resultants

From the relations between the displacement components and stress resultants given in
Eqs. (2a)–(2e), one finds that the solution given in Eq. (8) results in unbounded moments at r ¼ 0
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Table 4

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
for orthotropic sectorial plates with a free circumferential edge and various

Er=Ey ðGr ¼ Gy ¼ Gry ¼ 0:4EyÞ

Er=Ey s Vertex angle (a; deg)

30 60 90 120 150 180 195 210 270 330 360

1/10 1 120.66 37.081 16.432 8.2034 3.9153 0.0000 1.4157 2.5028 5.2669 6.6322 7.0549

2 212.80 104.499 69.896 53.686 44.569 38.868 37.271 36.108 33.702 32.713 32.403

3 271.21 156.93 117.18 97.437 85.854 78.366 76.285 74.715 71.090 69.259 68.612

4 335.66 212.18 168.88 147.00 133.99 125.49 123.24 121.51 117.20 114.73 113.79

1/3 1 65.481 20.196 9.0097 4.5383 2.1907 0.0000 0.8697 1.4631 2.9706 3.7285 3.9662

2 123.61 62.187 42.688 33.449 28.164 24.789 23.901 23.249 21.859 21.238 21.028

3 171.19 103.66 80.420 68.794 61.865 57.292 56.125 55.221 52.965 51.641 51.127

4 219.67 148.19 122.87 109.95 102.14 96.929 95.641 94.594 91.673 89.722 88.936

3 1 20.986 6.4147 2.9071 1.5036 0.7493 0.0000 0.5266 0.7584 1.2818 1.5397 1.6213

2 47.411 26.675 20.049 16.847 14.973 13.749 13.369 13.052 12.162 11.586 11.358

3 70.415 48.439 41.099 37.444 35.259 33.807 33.306 32.875 31.593 30.720 30.373

4 90.780 68.701 61.229 57.475 55.214 53.701 53.138 52.650 51.192 50.212 49.830

10 1 10.504 2.7729 1.0885 0.4711 0.1785 0.0000 0.4519 0.6186 0.9428 1.0835 1.1252

2 27.221 16.360 12.949 11.289 10.301 9.6397 9.3851 9.1650 8.5045 8.0527 7.8726

3 40.327 29.072 25.492 23.755 22.732 22.057 21.804 21.585 20.935 20.496 20.324

4 51.862 40.185 36.433 34.589 33.488 32.750 32.464 32.218 31.492 31.014 30.830
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when the real part of s is below one, while the solution given in Eq. (16) produces unbounded
shear forces when the real part of s0 is less than one. These phenomena will not be affected by the
boundary conditions specified along the circular edge of a sectorial plate. Based on the discussion
in Section 3, it is found that s is the root of the following fourth order polynomial:

s4 þ ðp2
nðuyr � Ey=Gry þ uryEy=ErÞ � Ey=Er � 1Þs2 þ Ey=Erð�1þ p2

nÞ
2 ¼ 0; ð23Þ

and that

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gy=Gr

p
pn: ð24Þ
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Fig. 2. Variation of oa2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rh=Dr

p
with vertex angle for sector plates having a fixed circular edge and various Er=Ey

(a) for 1st and 2nd modes, (b) for 3rd and 4th modes.
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Eqs. (23) and (24) show that for a constant value of pn; the moment singularity order is dependent
on the elastic moduli, the Poisson ratios, and Gry but is not dependent on Gr or Gy; while the shear
force singularity order only depends on Gy=Gr:

For vibration modes with no radial node lines, shown in Figs. 4a and b are the minimum
positive real part of s varying with the vertex angle. The results shown in Figs. 4a and b are for
ury ¼ 0:3: We consider different ratios for Er=Ey with Gry=Ey ¼ 0:4 in Fig. 4a, and consider
different ratios for Gry=Ey with Er=Ey ¼ 5 in Fig. 4b. For a constant vertex angle, larger Er=Ey or
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C.S. Huang, K.H. Ho / Journal of Sound and Vibration 273 (2004) 277–294 291



smaller Gry=Ey produces more severe moment singularities, and smaller Gy=Gr generates stronger
singularities in shear forces. For fixed material properties, the moment singularities in vibration
modes with no radial node lines become stronger as a gets closer to 180�; and there is no
singularity for a ¼ 180�:

Fig. 5 displays the variation of minimum s0 with respect to the vertex angle for different values
of Gr=Gy: The results show that the shear singularity becomes more severe as Gr=Gy or the vertex
angle becomes larger. Strangely but interestingly, when Gr=Gy is larger than one, the singularity
occurs even when the vertex angle is equal to 180�: Notably, the results for isotropic material
shown in Fig. 5 are identical to those obtained from a closed-form solution by Huang et al. [13].
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7. Concluding remarks

It is known that there is no closed-form solution for the vibrations of a polarly orthotropic
Mindlin sectorial plate with simply supported radial edges. This paper has presented the first
known series solution for such problems obtained by using the Frobenius method. The series
solution exactly describes the possible singular behaviors of stress resultants at the vertex of a
sectorial plate. The non-dimensional frequencies of an isotropic plate with simply supported
radial edges obtained from the present solution have been compared with those obtained from a
closed solution and found to be in excellent agreement with the latter.

The proposed solution has been applied to determine the vibration frequencies of sectorial
plates with a free or fixed circumferential edge and various elastic moduli. Non-dimensional
frequencies corresponding to no radial node line modes have been presented for a wide range of
vertex angles ð30�pap360�Þ and Er=Ey ¼ 0:1; 1/3, 3, and 10. These unprecedented and accurate
results can be used by future investigators to compare with data obtained using alternative
analytical methods.

The solution has also been applied to study the effects of elastic and shear moduli on the
singular behaviors of moments and shear forces at the vertex. It has been found that the
singularity of moments is independent of the shear moduli in the radial and tangential directions
(Gr and Gy), while the singularity of shear forces is only dependent on Gy=Gr and the value of the
vertex angle ðaÞ: The singularity of moments becomes stronger as a gets closer to 180�; but there is
no singularity for a ¼ 180�: The moment singularity also becomes more severe as Er=Ey

gets larger or Gry=Ey gets smaller. The singularity of shear forces becomes stronger as Gr=Gy or a
gets larger. When Gr=Gy is larger than one, there is a shear force singularity, even for the case
where a ¼ 180�:
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